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We investigate the stability of variable-density two-dimensional isolated vortices in the
frame of incompressible mixing under negligible gravity. The focus on a single vortex
flow stands as a first step towards vortex interactions and turbulent mixing. From
heuristic arguments developed on a perturbed barotropic vortex, we find that high-
density vortices are subject to a Rayleigh–Taylor instability. The basic mechanism
relies on baroclinic vorticity generation when the density gradient is misaligned with
the centripetal acceleration field. For Gaussian radial distributions of vorticity and
density, the intensity of the baroclinic torque due to isopycnic deformation is shown to
increase with the ratio δ/δρ of the vorticity radius to the density radius. Concentration
of mass near the vortex core is confirmed to promote the instability by the use of an
inviscid linear stability analysis. We measure the amplification rate for the favoured
azimuthal wavenumbers m =2, 3 on the whole range of positive density contrasts
between the core and the surroundings. The separate influence of the density-contrast
and the radius ratio is detailed for modes up to m =6. For growing azimuthal
wavenumbers, the two-dimensional structure of the eigenmode concentrates on a
ring of narrowing radial extent centred on the radius of maximum density gradient.
The instability of the isolated high-density vortex is then explored beyond the linear
stage based on high-Reynolds-number numerical simulations for modes m = 2, 3 and
a moderate density contrast Cρ = 0.5. Secondary roll-ups are seen to emerge from
the nonlinear evolution of the vorticity and density fields. The transition towards
m smaller vortices involves vorticity exchange between initially-rotating dense fluid
particles and the irrotational less-dense medium. It is shown that baroclinic enstrophy
production is associated with the centrifugal mass ejection away from the vortex
centre.

1. Introduction
Baroclinic vorticity production has been identified as the counterpart of buoyancy

forces in stratified geophysical flows where misalignment between the gravity
acceleration field and the density gradient produces and destroys vorticity, see
Turner (1973). The baroclinic vorticity production has been much less commented
on in high-Froude-number mixing flows. The transition stage of such flows has
deserved some interest since the experimental evidence shows that low-density jets
develop specific instability modes (Monkewitz & Sohn 1988). The development of
the Kelvin–Helmholtz instability in high-Froude-number incompressible variable-
density mixing layers was later subjected to numerical simulations by Soteriou &
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Ghoniem (1995), revealing the crucial role of baroclinic vorticity sources. Reinaud,
Joly & Chassaing (2000) found a secondary instability in the variable-density mixing
layer providing a two-dimensional spatial cascade towards smaller scales. It was
demonstrated to be related to the instability of the strained layer of vorticity and
density-gradient.

Turner (1957) mentioned the stabilizing effect of the centrifugal force due to rotation
within vortex rings lighter than the surrounding medium. He compared it to the action
of gravity on stably stratified shear flows. Chomiak & Nisbet (1995) referred briefly to
the instability of denser vortices into their variable-density turbulence model. The two-
dimensional direct numerical simulations by Chassaing et al. (1997) also confirmed
the robustness of low-density vortices and the short life-time of high-density vortices.
Additional simulations of binary-mixing two-dimensional turbulence, summarized
in Joly (2002), described the underlying process of mass-segregation by vorticity
measuring negative correlation ξ 2ρ ′, with ξ the vorticity and ρ ′ the density fluctuation.
Also displayed in Joly (2002) were accompanying nonlinear simulations of isolated
vortices showing axisymmetrization of a low-density vortex and the blow-up of a
high-density vortex into fine-grained smaller structures. Miller, Lindstrom & Cook
(2003) observed such a two-dimensional mechanism in the case of an impulsively
started density interface at high Schmidt number. After a first roll-up into a primary
structure embedding folded density spirals, this mechanism was responsible for a
secondary vorticity baroclinic generation. This secondary instability, resulting from
the streamline curvature, is of the same type as that occurring in the case of an
isolated high-density vortex.

The stability of swirling flows has also attracted much attention owing to the interest
in the breakdown of trailing vortices. Both axisymmetric and non-axisymmetric
perturbations of swirling flows were analysed in the light of both asymptotic and
normal-mode analysis. Though a sufficient condition for centrifugal instability has
been extended to the compressible case by Eckhoff (1984) in the limit of large axial
wavenumbers, it is demonstrated in a complementary paper by Sipp et al. (2005)
that such a condition cannot be formulated for two-dimensional non-axisymmetric
perturbations. Only an asymptotic analysis in the limit of vanishing density contrast
and radius ratio, yields that vortices are unstable to non-axisymmetric perturbations
if the density decreases radially somewhere. In contrast with these studies relying on
the formulation of classical Sturm–Liouville eigenvalue problems, the present paper
favours a heuristic approach and explores the mechanism of the two-dimensional
instability of heavy vortices in the light of baroclinic vorticity generation associated
with the centripetal acceleration field. This mechanism, originally discussed in Joly
(2002), is demonstrated to be of the same nature as the Rayleigh–Taylor instability in
an unstable atmosphere. It is explained in the preliminary part of § 2 for a perturbed
density field providing a tractable expression of the baroclinic torque associated
with departure from barotropy. It succeeds in stressing the destabilizing role of
density concentration near the vortex centre. The second part of § 2 is then devoted
to the derivation of a inviscid linear stability analysis of the heavy Lamb–Oseen
vortex. The growth rate and spatial structure of the eigenmodes, corresponding to
the more amplified first azimuthal wavenumbers, are detailed in § 3. The separate
influence of the radius ratio and density contrast are commented for modes up to
m =6. In § 4, high-Reynolds-number numerical simulations are carried out beyond
the linear stage. Based on these simulations, we describe the main features of the
breakdown of a heavy vortex submitted to optimal perturbations with m =2 and
m =3.
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2. The statement of the problem
2.1. Equilibrium solutions to the variable-density Euler equations

In the description of inviscid incompressible flows under negligible gravity, the Navier–
Stokes equations reduce to the Euler momentum equations supplemented with a purely
convective continuity equation for the density:

∇ · u = 0, (2.1a)

dt u = − 1

ρ
∇P, (2.1b)

dtρ = 0, (2.1c)

where dt = ∂t +(u · ∇) stands for the material derivative. Let χ = ∇ × u be the vorticity
that reduces to (0, 0, ξ ) in the two-dimensional case. Taking the curl of (2.1b) yields
the transport equation for the vorticity scalar field

dt ξ = a × ∇ρ

ρ
= a × ∇(ln ρ/ρ0), (2.2)

where a = dt u is the acceleration of the particle along a streamline and hereinafter
the specific density gradient is quoted as g = ∇(ln ρ/ρ0) where ρ0 can be any density
reference. The right-hand side of (2.2) exhibits one source term in contrast to the
conservative nature of vorticity in homogeneous two-dimensional inviscid flows. The
baroclinic torque b = a × g is felt when an inhomogeneous mass field is subjected to
an acceleration not aligned with the local density gradient. A two-dimensional vortex
with circulation Γ and characteristic radius δ is unsensitized to the gravity field if
the inertia force due to the vortex flow itself, ρu2

θ/δ with uθ ∼ Γ/δ a characteristic
azimuthal velocity, is large compared to the projection g′�ρ of the buoyancy force
on the vortex plane with �ρ a characteristic density difference between the vortex
core and its surroundings. Defining the density contrast as Cρ ∼ �ρ/ρ, we form the
Froude number Fr = Γ 2/(δ3Cρg

′) and we consider Fr � 1.
A steady solution to the constant-density Euler equation will stand as a solution

to the variable-density Euler equations if the density gradient is everywhere aligned
with the pressure gradient and isopycnic or isodensity lines are globally invariant
by advection. This is verified for any axisymmetric vorticity field associated with
any centred axisymmetric density distribution where the baroclinic torque remains
inactive as rings of fluid are moving around the vortex centre on circular streamlines.
We explore the effect of the density distribution on the stability characteristics of such
equilibrium solutions that we term barotropic vortices. In the unperturbed diffusive
situation, an initially barotropic vortex evolves as a barotropic vortex with the Schmidt
number setting the relative spreading rate of density and vorticity fields.

2.2. The baroclinic torque distribution on a perturbed barotropic vortex

The purpose of this section is to give a heuristic explanation of the instability
mechanism occurring on a high-density barotropic vortex. We give the expression
of the baroclinic vorticity production resulting from an harmonic deformation of
the otherwise circular density contours. The instability mechanism is demonstrated
by considering vorticity sources and sinks as secondary vortices due to the loss of
barotropy. We consider a Gaussian axisymmetric vortex of circulation Γ and core
radius δ, defined by its vorticity in polar coordinates,

Ω(r, θ) =
Γ

πδ2
exp

(
−r2

δ2

)
. (2.3)
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Figure 1. Radial profiles along ray θ = π/4 of two perturbed dense barotropic vortices with
Γ = π, δ = 1, ρc/ρb = 3, m= 2 and e =0.3: (a) azimuthal velocity uθ (solid) and density profile
ρ−ρb for ε = 1 (dashed) and ε = 4 (dot-dashed); (b) radial acceleration ar (solid) and azimuthal
component of the specific density gradient gθ for ε = 1 (dashed) and ε =4 (dot-dashed).

This vortex induces a purely azimuthal velocity uθ and a purely radial acceleration
ar ,

uθ (r, θ) =

[
1 − exp

(
−r2

δ2

)]
Γ

2π r
, ar (r, θ) = − u2

θ

/
r. (2.4)

In order to obtain a tractable expression of the baroclinic torque in a particular case,
we apply a harmonic deformation with amplitude e < 1 and azimuthal wavenumber
m > 0 on a Gaussian axisymmetric density field with characteristic radius δρ = δ/ε,

ρ(r, θ) = ρb + (ρc − ρb) exp

(
−

r2
ρ(θ)

δ2
ρ

)
, rρ(θ) = r[1 + e cos(mθ )] (2.5)

where ρb is the density of the background fluid and ρc the density at the vortex centre.
Hence, the azimuthal component of the specific density gradient reads

gθ (r, θ) =
1

rρ

∂ρ

∂θ
=

(
1 − ρb

ρ

)
2mer

δ2
ρ

[1 + e cos(mθ)] sin(mθ). (2.6)

The radial profiles of these flow variables are illustrated on figure 1 for m =2 and
along the ray θ = π/4 where gθ is maximum and for two radius ratios ε =1 and ε =4.
Increasing the radius ratio concentrates mass towards the vortex core and increases
the peak value of gθ while the radius of maximum gradient decreases.

The deformation of isopycnic lines yields the misalignment between density and
pressure gradients resulting in the distribution, b, of baroclinic vorticity sources and
sinks

b(r, θ) = ar gθ = 2 m e ε2 u2
θ

δ2
[1 + e cos(mθ)]

ρb − ρ

ρ
sin(mθ). (2.7)

The baroclinic torque is of the sign of (ρb − ρc) sin(mθ) and its amplitude increases
with the amplitude e of the isopycnic deformation, the azimuthal wavenumber m, the
density contrast (ρb/ρc −1) and the circulation Γ . Both denser and less-dense vortices
are considered in figure 2, where we illustrate the sign of vorticity sources and sinks in
the four quadrants of the vortex perturbed on mode m =2. On the interval θ ∈ [0, 2π[,
the sign of sin(mθ ) changes on (2m − 1) rays. Therefore, a system of 2m alternate
sign contributions corresponding to m counter-rotative dipoles are superimposed on
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Figure 2. Sketch of the baroclinic torque contributions on Gaussian vortices bearing (a) less-
dense and (b) denser elliptic density distributions. - - -, vorticity contour;—, density contour.
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Figure 3. Maximum of the negative baroclinic vorticity source at θ = π/4 versus the radius
ratio ε = δ/δρ for a barotropic vortex with Γ = π, δ = 1 and ρc/ρb = 3 with the density radius
deformed with m= 2 and e = 0.3.

the base vorticity field. Consequently, less-dense fluid particles are engulfed in and
denser fluid particles are ejected from the vortex core between consecutive dipoles.
Axisymmetrization of the density distribution is expected if the vortex core is less
dense than the surrounding fluid, whereas vortices with a denser core are unstable to
perturbations. The arbitrary harmonic deformation of the density field serves here as
an illustration of the generic distribution of vorticity sources and sinks on a perturbed
barotropic vortex. The instability of the massive vortex is the result of the departure
from barotropy or, as developed in § 2.1, proceeds from the loss of axisymmetry.
The sensitivity of the baroclinic torque intensity to the mass-concentration ε towards
the vortex axis is described in figure 3 in the case of a dense vortex. The harmonic
deformation of the density isocontours indicates that the Rayleigh–Taylor instability
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Figure 4. Analogy between the dense vortex and the unstable density stratification submitted
to a downward gravity field (ρ1 > ρ2). —, density contour (isopycnic); - - -, vorticity contour.

of the denser vortex is favoured by a characteristic density radius smaller than the
vorticity radius.

This mechanism is similar to that occurring in Rayleigh–Taylor instability where
a quiescent stratified medium is submitted to the external acceleration of the gravity
field. There, the acceleration is of constant direction and intensity, and the stability
of the flow is governed by the misalignment between a fixed acceleration field and a
perturbed density gradient. Here, the acceleration field is due to the kinematics of the
vortex flow which initially yields a purely radial acceleration. Figure 4 illustrates the
analogy between the unstable atmosphere and the equivalent unrolled heavy vortex.
This is the basic mechanism mentioned by Turner (1957) and observed in another
context by Miller et al. (2003). Now we explore the parameter space of the isolated
dense vortex with a normal mode linear stability analysis.

2.3. The equations for the inviscid stability analysis

The base flow is the Gaussian vortex with azimuthal velocity U (r) as given by (2.4).
We superimpose the following density distribution R(r) also resulting from similarity
solutions of the diffusive problem,

R = ρb + (ρc − ρb) exp

(
− r2

δ2
ρ

)
. (2.8)

We choose the density contrast Cρ = (ρc −ρb)/(ρc+ρb) as the relevant parameter, lying
in [−1, 1], to explore the whole range of density ratios. This parameter, elsewhere
invoked as an Atwood number, gives a straightforward logarithmic scale for the
normalization of relative density gradients in the equations. Denoting s = ρc/ρb the
density ratio, both measures of the fluid inhomogeneity are, of course, equivalent by
Cρ = (s −1)/(s +1). Besides, the radius of the density Gaussian distribution provides a
second length scale δρ that will be related to the vorticity radius by the ratio ε = δ/δρ .
We will often refer to vortices larger then their associated density field for which
ε > 1.

The variable-density Euler equations are linearized around the base flow for the
velocity, pressure and density perturbations [ûr , ûθ , p̂, ρ̂](r, θ, t). The perturbations
are assumed to be of the form [ûr , ûθ , p̂, ρ̂] = [iur (r), uθ (r), p(r), ρ(r)] exp[i(mθ −
ωt)], where m is the positive integer azimuthal wavenumber and ω is the complex
disturbance phase speed. With γ = mU/r − ω, ()∗ = ()′ + ()/r and prime denoting
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r-differentiation, we write the set of equations for the disturbance amplitudes:

γρ + R′ur = 0, (2.9)

u∗
r + muθ/r = 0, (2.10)

R(γ ur + 2Uuθ/r) + U 2ρ/r + p′ = 0, (2.11)

R(γ uθ + U ∗ur ) + mp/r = 0. (2.12)

The loss of barotropy being associated with the loss of axisymmetry, there
are no unstable modes for axisymmetric perturbation and hereinafter m > 0. The
eigenfunctions must vanish at r = ∞, and considering leading-order terms in the
Taylor series we obtain the limit behaviour at r = 0:

ur, uθ ∼ O(rm−1), p, ρ ∼ O(rm). (2.13)

We reduce the system (2.9)–(2.12) to a minimalist set of two coupled equations for
the amplitudes of the radial velocity and the density perturbations:

γρ + R′ur = 0, (2.14)

(r2Rγ/m)u′′
r + [2RU + r(rRγ )′/m + 2rRγ/m − rRU ∗]u′

r

+ [2RU/r − mRγ − (rRU ∗)′ + (rRγ )′/m]ur + (mU 2/r) ρ = 0. (2.15)

Included in the function γ , the phase speed ω = ωr + i ωi appears linearly in the
above system which forms an eigenvalue problem. The sign of the imaginary part
of ω discriminates between stable vortices for negative ωi and unstable vortices for
positive ωi .

We use a spectral collocation method on a basis of Chebyshev polynomials
mapped algebraically on the interval [0, ∞]. This discretization produces a generalized
eigenvalue problem under the matrix form Ax = ωBx that is solved by the QZ
algorithm under Matlab. The number of Chebyshev modes for each variable is N

which sets the dimension of matrices A and B to (2N )2. Owing to the presence of
critical layers where γ =0, the search of the frontier of neutral stability requires
contouring the singularities in the complex plane (see Boyd 1985). Increasing the
number of collocation points shrinks the discretization spectrum towards the real
axis, but does not succeed in unveiling the neutral limit. We use contour deformation
according to the proposal of Leibovich & Stewartson (1983) which deforms the
discretization spectrum below the real axis. The real coordinate r is mapped to
r̂ = r[1 − iλγ ′(r)], where λ ∈ [0, 1] sets the intensity of the contour deformation. All
real coefficients of the system (2.14), (2.15) are made complex by substitution of r̂

to r . For the detection of the most amplified mode, we increase simultaneously the
number of collocation points N and the displacement factor λ until one fixed point
is detected in the (ωr, ωi)-plane. The invariance to the couple (N, λ) is judged to a
relative accuracy of 10−4. This results in rapid convergence and N ∼ 60 for largely
amplified modes remote to the neutral limit whereas marginally stable modes require
a higher resolution raising up to N ∼ 300.

3. Topography of the instabilities
Figure 5 displays the contours of the amplification rate in the (Cρ, ε)-plane for

modes m =2 and m =3 and positive values of the density contrast. As expected from
the above considerations, no unstable modes are found for vortices less dense then
the background fluid, i.e. for negative Cρ . We choose to apply a logarithmic scale
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Figure 5. Contours of constant amplification rate ωi in the (Cρ, ln10(ε))-plane for azimuthal
wavenumbers (a) m= 2, m= 3. (b) The increment between contours is 0.02 and the thick line
is the neutral curve.

to the radius ratio to stretch the range around unity. For m = 2, the neutral curve
stands above ε = 1 for density contrasts below 0.5. The sharp transition around this
value is due to weakly amplified modes detected for extremely dense vortices. For this
azimuthal wavenumber, the amplification rate peaks up to 0.48 in the upright corner
of the (Cρ, ε)-plane. The map of the amplification rate for m = 3 is similar with a
maximum amplification rate of 0.62 for unrealistic extreme density ratios (Cρ ∼ 1)
and very small density cores (ε � 1).

Given a density contrast, the vortex is stable to small perturbations below a critical
radius ratio. For moderate density ratios encountered in binary mixing and thermal
mixing, instability will occur only if the denser core is smaller than the vortex core.
This must be related to the preliminary results displayed on figure 3, stressing the
increase of the perturbation baroclinic torque with decreasing density radii. For a
given density contrast, the density gradient increases when reducing the density radius
and so does the cause of the Rayleigh–Taylor instability. For small enough dense
cores, the growth rate of the instability in the linear regime increases with the density
contrast. Consequently, the larger growth rates are found in the upper right-hand
corner of the (Cρ, ε)-plane.

These main conclusions are further illustrated in figure 6 where we separate the
influences of the radius ratio and the density contrast for the first six modes. For
a mean density contrast Cρ = 0.5, the critical radius ratio is seen to increase with
the azimuthal wavenumber. The increase of the growth rate with increasing radius
ratio saturates before ε = 10 when only one length scale, δ, becomes relevant to the
base flow. The asymptotic value at saturation is seen to increase with the azimuthal
wavenumber. As seen for modes 2 and 3, the amplification rate increases with the
density contrast for a given radius ratio. It is seen from figure 6 that for a radius
ratio ε =2, mode m = 2 is the most unstable for moderate density contrasts below
0.35 and is superseded by mode m =3 above that level.

Mode m = 1 exhibits much lower amplification rates than modes m =2 and m = 3
almost everywhere except in a small region of the parameter space lying around
(Cρ, ε) = (0.2, 1.4). As also displayed in a complementary paper by Sipp et al. (2005),
we found that when mode m = 1 is the most amplified mode, its amplification rate
remains below 0.01. From Joly & Reinaud (2005), it is seen that vortex interactions
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Figure 6. Analysis of the separate influence of the radius ratio and the density contrast on the
amplification rate ωi of the first six azimuthal wavenumbers. (a) Influence of the radius ratio
for a density contrast Cρ = 0.5 corresponding to a core 3 times denser then the surrounding
fluid; (b) influence of the density contrast for a radius ratio ε = 2. The black dots on both
figures locate the modes selected for the nonlinear simulations.

m 1 2 3 4 5 6 7

ωi 0.094760 0.192196 0.20379 0.18209 0.14101 0.08519 0.01666
ωr 0.297621 0.734845 1.20582 1.67331 2.14001 2.60726 3.07500

Table 1. Eigenvalues for the unstable mode of the vortex defined by Cρ = 0.5 and ε = 2.

occurring in a typical two-dimensional vortex merger are producing large-scale
perturbations similar to the m =2 case. We focus here on these largely amplified
modes likely to occur in viscous flows with vortex interactions.

From these results we select the vortex with a density core half the size of the
vortex core, ε =2, and Cρ = 0.5, corresponding to a density ratio of s = 3. This
vortex is unstable to modes m =1 to m =7 with eigenvalues reported in table 1.
The absolute value of the eigenfunctions of velocity and density perturbations is
described in figure 7 for modes m =2, 3, 4, 6. The asymptotic behaviour at the origin
as prescribed by 2.13 is verified. In particular, the velocity eigenfunctions of mode
m = 2 exhibit a linear growth from the origin. As m is increased, the velocity and
density eigenfunctions spread over a region of narrowing radial extent. This region
is centred on the characteristic radius r = δρ of the density distribution. The spatial
structure of these modes is compared in figure 8 displaying the two-dimensional
vorticity perturbation fields. The vorticity perturbation and density perturbation (not
displayed) are organized as 2m spiral arms of alternate sign. In the next section, we
investigate the development of eigenmodes m =2, 3 beyond the linear stage.

4. Nonlinear simulations of the breakdown of a dense vortex
4.1. The numerical procedure

A viscous numerical simulation is carried out on the previously selected base field
perturbed by the most unstable inviscid mode. In the limit of zero Mach number, the
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Figure 7. Absolute value of the eigenfunctions of the denser vortex flow with Cρ = 0.5 and
ε = 2: radial velocity ur (solid), azimuthal velocity uθ (dashed) and density ρ (dot-dashed).
Normalization is performed to ensure a unitary kinetic energy e = 1

2

∫ ∞
0 (u2

r + u2
θ ) dr .

divergence of the velocity field is due to the molecular diffusion of species only, and
the continuity equation comes out as an advection–diffusion one. This is relevant to
the mixing of two incompressible fluids with Fickian diffusion allowing the density
to vary between the densities of the pure species, ρc and ρb. For the high-Reynolds-
number flows considered here, the divergent contribution of the viscous diffusion is
discarded. We consider also constant diffusivities in order to retain first-order density
effects of inertial nature in a minimalist code avoiding contributions due to variations
of the fluid properties, see Chassaing et al. (2002) for details. The characteristic
scales are determined by the vortex circulation Γ , the vortex radius, the density
contrast and the radius ratio. In particular, the time scale τ is the inverse of the
maximum vorticity πδ2/Γ . Given a unitary Schmidt number and Re = Γ/ν =20 000
the Reynolds number based on the vortex circulation Γ , we solve the following
normalized transport equations for the primitive variables (�, u), with � = ln(ρ/ρb),

dt� =
1

ReSc
��, (4.1a)

dt u = − 1

ρ
∇p +

1

Re
�u. (4.1b)

The numerical procedure is a two-thirds dealiased pseudo-spectral code based on a
variable-density transpose of the projection method ensuring the diffusive nature of
the velocity divergence. The non-solenoidal part of the velocity field is prescribed when
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Figure 8. Two-dimensional structure of the vorticity perturbation corresponding to

eigenmodes m= 2, 3, 4, 6 of the vortex with Cρ = 0.5 and ε = 2. Contour spacing : max(ξ̂ )/6.

solving the Poisson equation for the pressure by ensuring: Re Sc∇ · u = −Cρ��. The
variables are time-advanced using a low-storage third-order Runge–Kutta scheme
with semi-implicit treatment of right-hand-side terms. The time step is variable
and adjusted according to the current maximum of velocity ensuring the Courant–
Friedrichs–Lewy condition is respected with CFL = �t/�x × max(u) kept under 0.7.
As will be described later, the spatial structure of the flow evolves towards much
smaller length scales. We opted for a time-dependent spatial resolution to minimize
the early-time simulation cost. Starting with a 20482 grid, a spectral sensor placed
near the maximum wavenumber triggers the increase of the spectral radius raising
the final resolution up to 57602 in the m = 3 case. At the initial time, the amplitude
of the perturbation is normalized to represent 2 % of the enstrophy of the base flow.

The boundary conditions are periodic in both directions, resulting in a bias
compared to the case considered in the stability analysis with an infinite spatial
extent. As discussed by Pradeep & Hussain (2004), periodicity of the boundary
conditions yields zero normal and tangential velocities on the square computational
boundaries and a zero circulation over the computational domain. Owing to its slow
radial decrease, the azimuthal velocity of the base flow is the variable most affected
by this constraint. A background negative value ξb such that ξb × Lx × Ly = − Γ is
also added to the vorticity field. The bias amplitude depends on the relative size of the
computational domain compared to the vortex core. In the simulations commented
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on here, the vortex circulation is π/4 while the domain is (2π)2 with a vortex radius
δ =0.5. This corresponds to a distance from the vortex centre to the domain boundary
of a little more than 6 radii and a peak vorticity ξp = 1 + ξb. In this case, ξb =(16π)−1

which amounts to less than 2 % of ξp . This allows for a good compromise between
representing the isolated vortex flow and the required spatial resolution of the very
thin layers arising during the nonlinear stage of the instability. However, clearly, the
eigenmodes deduced from the stability analysis only approach the eigenmodes of
the effective base flow as seen from the numerical simulation tool. The simulation of
the linear stage thus suffers from the lack of representivity of the boundary conditions
of the isolated vortex. However, in the nonlinear stage, the instability mechanism
produces baroclinically enhanced vorticity up to 10 times the initial peak value ξp , or
1000 times the artificial background vorticity ξb. Simulations were performed in worse
conditions with a vortex radius twice the present one and exhibited vorticity and
density fields very similar to those that follow. We conclude that the nonlinear stage
is properly represented despite the periodization of the flow. Besides, the purpose
of this numerical approach is to give a first illustration of this original instability
mechanism beyond the linear stage.

4.2. Description of the flow

Figures 9–12 illustrate the time evolution of the vorticity and density fields of nonlinear
realizations of the Rayleigh–Taylor instability for modes m = 2 and m =3 of the
vortex three times denser than the surrounding fluid. As the instability develops,
the baroclinic torque concentrates vorticity on m spiral arms while it destroys it
in-between. These spiral arms are turning into vorticity sheets of decreasing thickness
and increasing vorticity. The centre of the vortex is gradually mass-deprived as dense
fluid particles initially in the vortex core are ejected away on the spiral arms. These
vorticity sheets partially roll up into m smaller vortices associated with densities
much smaller than the initial core density. Beside the breakdown process and the
condensation on smaller vortices, vorticity filaments of both signs are generated and
wrapped around emerging more robust vortices.

Let Ω be the vorticity of the base flow given by (2.3). We measure the amplitude
of the vorticity and density perturbations by,

ξ ′ =

∫
(ξ − Ω) dx dy, ρ ′ =

∫
(ρ − R) dx dy. (4.2)

The radius of the unperturbed Gaussian vortex is known to evolve as δ =
δ0

√
1 + 4πt/Re in normalized time units. Considering the very high Reynolds number

of the simulation, the radius of the unperturbed field would have gained less than 1 %
of the initial value at t = 20. Figure 13 displays the time evolution of the perturbation
amplitudes, normalized by their initial value. The exponential growth rates of these
perturbations as predicted by the linear stability analysis are σm=2 = 0.192 and
σm=3 = 0.204. We compare the effective growth rates to an average growth rate
σ = 0.2. The vorticity and density perturbations are seen to grow after a few time
units because of the non-optimal nature of the eigenmodes within the numerical
frame. Then exponential growth is observed that compares well with the predicted
rate despite the misrepresentation of the boundary conditions. In figure 13(b), the
density perturbation of mode m =3 is seen to grow faster than the density perturbation
of mode m =2, confirming the slight precedence of mode m =3. From the evolution
of the amplitude of vorticity and density perturbations, the saturation is seen to occur
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t = 0, N = 2048 5, 2304 10, 2304 15, 2304

20, 2640 25, 4224 30, 4620 35, 4620

Figure 9. Sequence of isovorticity contours for m= 2. Length scale δ is represented by the line
segment at t = 0. Contour spacing 0.1/τ from t =0, 5, 10, 15, 0.4/τ for t = 20, 25 and 0.8/τ for
t =30, 35. Contours at negative levels are dashed. N is the number of grid points along one
direction of the squared simulation domain.

t = 0,  N = 2048 5, 2304 10, 2304 15, 2304

20, 2640 25, 4224 30, 4620 35, 4620

Figure 10. Sequence of isodensity contours for m= 2. Length scale δρ is represented by the
line segment at t =0. Fixed contour spacing (ρc − ρe)/9.

near t =30 for both modes. The departure from the linear exponential growth is
effective by t = 20.

In figure 14(a), enstrophy production by the baroclinic torque is seen to peak at
saturation time. The peak value is higher for mode m =2 and approximately six times
the initial value. In the development of mode m =3, a secondary instability of the
vortex sheets results in a small burst of enstrophy at t = 35. Then for both modes, the
enstrophy monotonously decreases owing to viscous dissipation at high wavenumbers.
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t = 0,  N = 2048 5, 2112 10, 2112 15, 2112

20, 2240 25, 4620 30, 5760 35, 5760

Figure 11. Sequence of isovorticity contours for m= 3. Legend as for m= 2 in figure 9.

t = 0,  N = 2048 5, 2112 10, 2112 15, 2112

20, 2240 25, 4620 30, 5760 35, 5760

Figure 12. Sequence of isodensity contours for m= 3. Legend as for m= 2 in figure 10.

The baroclinic vorticity generation has been proposed as the basic mechanism of this
instability, in yielding the centrifugal ejection of the denser fluid particle away from
the vortex core. In order to prove this point, we measure the correlation between the
radial velocity and the density difference relative to the mean density ρ̄, where the
overbar denotes an average over the whole simulation domain. The correlation is
normalized by their respective variances to form a correlation coefficient,

Cρur
=

(ρ − ρ̄)ur(
(ρ − ρ̄)2 u2

r

)1/2
. (4.3)
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Figure 13. Time evolution of the normalized amplitude of the vorticity perturbation (a) and
of the density perturbation (b) for modes m= 2 (solid), m= 3 (dashed). The thick solid line
represents an exponential growth with a rate averaged between m= 2 and m= 3 growth rates
predicted by the linear stability analysis, i.e. ∼ exp(0.2t).
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Figure 14. (a) Time evolution of the total enstrophy on the simulation domain z =
∫

ξ 2 dx dy.
(b) Time evolution of the correlation coefficient between the density fluctuation and the radial
velocity.

From the time evolution of this correlation coefficient in figure 14(b), the ejection of
high-density fluid particles and convergence of low-density ones towards the vortex
centre is seen to be significant after several time units. It occurs sooner for mode
m = 2 and reaches a value of 0.4 well before saturation time, indicating a coherent
mass ejection as seen from density isocontours on figure 10 at t = 20, 25. After the two
smaller vortices have formed far from the centre of the domain, the radial velocity is
not relative to a vortex centre and Cρur

is no longer relevant. Mass ejection during the
nonlinear development of mode m = 3 is less violent and occurs later in two phases
associated with the two peaks in enstrophy generation. After the first stage between
t = 20 and t = 25, three small vortices are seen to rotate near the initial vortex centre
in figure 11 at t = 30. At this point, the radial velocity from the domain centre is
still relevant to the global vortex system. Then another centrifugal mass ejection is
observed by t = 30 signalled by a second increase of enstrophy and Cρur

.
The measure of the density at the centre of the m smaller structures at t =30

reveals a density ratio of s = 1.44 against the background medium, corresponding
to a density contrast Cρ =0.18. Owing to the unitary Schmidt number the resulting
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roll-ups have similar density and vorticity radii, hence ε ∼ O(1). We refer to figure 5 to
conclude that these new vortices, slightly denser than the surrounding fluid, are stable
pertaining to the Rayleigh–Taylor instability. From inspection of the contours of
figures 10 and 12, we estimate that the characteristic length scale of the m generated
vortices compared to the initial vorticity radius has been divided by 6 for m = 2
and by 10 for m =3. Moreover, very high levels of vorticity have been generated
and the chosen values at the new vortex centres are ten times higher than the initial
maximum vorticity for both cases. A clear picture of the situation after the completion
of the Rayleigh–Taylor instability then emerges from these measurements. The
baroclinic production of vorticity has produced smaller stable roll-ups of much higher
vorticity. During the process, high-density samples of fluid have been shed forming
strained lumps much more sensitive to molecular diffusion than the initial barotropic
distribution.

5. Concluding remarks
The analysis of the linear inviscid stability of the variable-density isolated vortex

has been derived. The heavy vortex is subjected to a Rayleigh–Taylor instability
promoted by the concentration of dense fluid on a smaller radius than the vortex core.
Low azimuthal wavenumbers, m =2, 3 are seen to be more amplified for moderate
radius ratios and realistic density ratios. The maps of their growth rates have been
established and the neutral curve delineated in the density-contrast versus radius-ratio
parameter space. Nonlinear numerical simulations of the breakdown of a vortex three
times denser than the surrounding fluid have been carried out for eigen-perturbations
derived for m =2 and m = 3. The baroclinic torque is seen to produce thinning
vorticity sheets partially nucleating into m robust smaller vortices of lower density
and higher vorticity than the initial one. This relaxation towards a more stable flow
proceeds from vorticity exchange between dense fluid particles from the vortex core
and less-dense ones from the background irrotational field.

This mechanism shall be examined further as being central to variable-density
mixing at high Froude-number. The instability of high-density vortices and the
robustness of low-density vortices are expected to result in mass-segregation by
vorticity in two-dimensional flows, resulting in low-density fluid particles near vortex
centres and high-density fluid particles occupying the interlacing medium. Measuring
the anti-mixing effect of the mass-segregation mechanism should be addressed in
turbulent flows where vortex interactions are crucial and lower the relevance of the
isolated vortex configuration. However, the spectral reconditioning of the vorticity field
towards higher wavenumbers associated to the breakdown of high-density vortices
increases dissipation and mixing at small scales. The resulting strained high-density
fluid lumps arising during the development of the Rayleigh–Taylor instability are
more efficiently smeared out by molecular mass-diffusion. The resolution of these
contradictory effects of the baroclinic torque on the mixing efficiency is the subject of
ongoing efforts. The influence of the Schmidt number may well be of first importance
in the discussion of such a question. In the perspective of variable-density turbulent
situations, the two-dimensional and three-dimensional vortex interactions are also
under consideration.

We acknowledge fruitful discussions with J.N. Reinaud and D. G. Dritschel.
Numerical simulations were performed on the scalar resources of the IDRIS centre
under project number 41552.
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